

Available online at www.sciencedirect.com

Catalysis Today 96 (2004) 211-222

Designing the activity/selectivity of surface acidic, basic and redox active sites in the supported $K_2O-V_2O_5/Al_2O_3$ catalytic system

Xiang Wang, Israel. E. Wachs*

Operando Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015, USA

Available online 5 August 2004

Abstract

The supported $K_2O-V_2O_3/Al_2O_3$ catalytic system was designed to create surfaces that were 100% acidic, 100% basic, 100% redox, mixed redox-acidic and mixed redox-basic. The resulting nature of the surface sites was controlled by the impregnation of the specific additives (K-basic or V-redox/acidic), their order of impregnation and their surface coverage. The exact locations of the surface methoxy intermediates (Al-OCH₃, K-OCH₃ or V-OCH₃) on the mixed oxide catalyst surfaces during methanol oxidation were determined with in situ Raman spectroscopy. The surface chemistry of the various surface sites and their surface reaction intermediates were chemically probed by CH₃OH oxidation steady-state and temperature programmed surface reaction (TPSR) spectroscopy studies. The specific reactivity order and the product selectivity of the various surface sites were found to be: V-OCH₃ (HCHO) ~ Al-OCH₃ (CH₃OCH₃) \gg K-OCH₃ (primarily CO₂ and minor amounts of HCHO). Formation of dimethoxy methane, (CH₃O)₂CH₂, required the presence of dual surface redox-acidic sites surface redox sites to yield H₂CO and surface acidic sites to insert the surface acid sites completely suppressed reactions from the surface acidic sites and formed a surface with only basic characteristics. The addition of redox surface vanadia to the supported K₂O/Al₂O₃ catalyst was able to completely suppress reactions from surface basic sites and formed a surface with only redox characteristics. These studies demonstrate that it is possible to determine the specific surface site requirements for each reaction pathway for methanol oxidation to products, and that this informative approach should also be applicable to other reactant molecules. © 2004 Elsevier B.V. All rights reserved.

Keywords: Supported metal oxide catalyst; Al₂O₃; V₂O₅; Potassium oxide (K₂O); Methanol oxidation; Formaldehyde, dimethyl ether, dimethoxy methane; Carbon dioxide; Characterization; BET; In situ Raman spectroscopy; Temperature programmed surface reaction (TPSR) spectroscopy

1. Introduction

Supported vanadium oxide catalysts are well-known for their efficiency in selective oxidation reactions and are widely used in many industrial processes such as selective catalytic reduction (SCR) of NOx with NH₃ [1], sulphur dioxide oxidation [2], oxidation of *o*-xylene to phthalic anhydride [3,4], hydrocarbon oxidative dehydrogenation [5–7] and ammoxidation of alkyl aromatics to nitriles [8]. In addition, supported vanadia catalysts have also been examined for many other reactions such as methanol oxidation and partial oxidation of hydrocarbons for the purpose of obtaining fundamental catalytic insights [9-14]. The catalytic performance of supported vanadia catalysts can also be greatly modified by the introduction of additives that affect the activity and selectivity, thus, achieving catalysts with high specificity for the targeted reaction products [1,2,9-14].

The addition of basic potassium oxide to supported vanadia catalysts is known to influence the activity of the surface vanadia species by retarding its redox potential and simultaneously increasing its selectivity in oxidation reactions [9–14]. The order of impregnation of potassium oxide and vanadia is also known to have an effect on the resulting catalytic properties [9–14]. Surface potassium

^{*} Corresponding author. Tel.: +1 610 758 4274; fax: +1 610 758 6555. *E-mail address:* iew0@lehigh.edu (Israel. E. Wachs).

^{0920-5861/\$ –} see front matter O 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.cattod.2004.06.145

oxide coordinates to the surface vanadia species, reduces the terminal V=O bond order, decreases the number of active surface acidic sites and increases the number of surface basic sites [9–14]. Thus, the supported V_2O_5 – K_2O/Al_2O_3 catalysts represent an interesting system to further investigate how to design model metal oxide surfaces with specific active surface sites (redox, acidic, basic, redox-acidic and redox-basic).

In the present study, the effects of basic potassium oxide on the nature of the active surface sites of supported V_2O_5/Al_2O_3 and Al_2O_3 catalysts were investigated by using the methanol oxidation chemical probe reaction. Additional fundamental insights into the surface structures, surface reaction intermediates and the surface reaction mechanisms were obtained from in situ Raman and temperature programmed surface reaction (TPSR) spectroscopy studies. Based on these results, the surface structure-reactivity/selectivity relationships have been determined for methanol oxidation over the supported $K_2O-V_2O_5/Al_2O_3$ catalytic system that allows for its design for specific reaction products (formaldehyde, dimethyl ether, dimethoxy methane or CO/CO_2).

2. Experimental

2.1. Catalyst preparation

The catalysts employed in this study were prepared by the incipient wetness impregnation method. The Al₂O₃ (Engelhard, 214 m²/g) support was calcined in air at 500 °C for about 2 h before being used for the catalyst preparations. To achieve monolayer coverage of the two-dimensional surface vanadia species on the Al₂O₃ support, the vanadia loading was maintained around 20% V_2O_5 [9]. For the potassium oxide modified supported V₂O₅/Al₂O₃ samples, an 11.5% K₂O loading was used in order to maintain a K/V molar ratio of 1/1. In order to investigate the effect of preparation sequence on the properties of the catalysts modified by potassium oxide, two K2O-V2O5/Al2O3 samples with an inverse K_2O and V_2O_5 addition sequence were prepared. The 11.5% K₂O/Al₂O₃ and 11.5% K₂O/20% V₂O₅/Al₂O₃ samples were prepared by the impregnation of an aqueous solution of KNO₃ (J. T. Baker, 99.7%) onto Al₂O₃ and 20% V_2O_5/Al_2O_3 supports, respectively. After impregnation, the samples were dried at room temperature overnight. The catalysts were subsequently calcined in air at 600 °C for 4 h to ensure that KNO₃ completely decomposed. The 20% V₂O₅/Al₂O₃ and 20% V₂O₅/11.5% K₂O/Al₂O₃ were prepared by the impregnation of an isopropanol solution of VO(OC₃H₇)₃ (Alfa Aesar, 95–99%) onto Al₂O₃ and 11.5% K₂O/Al₂O₃, respectively, in a glove box under a continuous N₂ flow. After impregnation, the samples were subsequently dried inside the glove box overnight in a N₂ flow at room temperature. The samples were subsequently calcined in air at 600 $^{\circ}$ C for 4 h.

2.2. BET specific surface area measurement

The specific surface areas of the samples were measured by nitrogen adsorption–desorption in flowing N₂ at 77 K with a QuantaChrome Sorption system. To better understand the change of the Al₂O₃ support specific surface area upon the addition of the various additives, the specific surface areas of Al₂O₃ in the different samples were also determined by assuming that the added vanadium and potassium oxides do not contribute to the surface area of the samples since they are essentially dispersed as two-dimensional metal oxide overlayers on the Al₂O₃ surface (confirmed with Raman spectroscopy) and that they only contribute to the mass of the sample.

2.3. In situ Raman spectroscopy

The in situ Raman spectra under flowing O₂/He and CH₃OH/O₂/He environments were obtained with the 514.5 nm line of an Ar⁺ ion laser (Spectra Physics, Model 164). The scattered radiation from the sample was directed into a CCD detector (Jobin Yvon-Spex, ISA Inc., Model Spectrum-1) cooled with liquid N2. The spectral acquisition consisted of 25 scans and 30 s per scan (12.5 min/spectrum). The samples were pressed into self-supported wafers loaded into an in situ quartz cell [15]. Afterwards, the in situ cell with the samples was heated to 450 $^{\circ}$ C and kept for \sim 1 h in a flowing O_2 /He gas mixture (100 ml/min) containing $\sim 20\%$ O₂ to remove any possible combustible sample impurity. The samples were then cooled down to 230 °C, and the in situ Raman spectra of the dehydrated samples were collected. Subsequently, the methanol/O2/He gas mixture flow (100 ml/min) was introduced into the in situ Raman cell with a CH₃OH/O₂/He molar ratio of 4/20/76 at 230 °C and the in situ Raman spectra were collected after ~ 30 min to allow steady state conditions to be reached.

2.4. CH₃OH-temperature programmed surface reaction spectroscopy

Methanol-TPSR was performed on a Zeton-Altamira temperature programmed system (AMI-100) equipped with an online quadrupole mass spectrometer (Dycor Dymaxion DME200MS). The samples, ~40 mg, were loaded into a Ushaped quartz tube and initially calcined at 450 °C (Ultra Zero Grade O_2 /He, 30 ml/min) for ~1 h to remove any possible adsorbed impurities. To ensure that the supported vanadium species on the catalysts remain in a fully oxidized state, the pretreated samples were first cooled down in flowing air to110 °C and then the gas stream was switched to an ultra high purity He flow upon further cooling to 100 °C. After flushing with continuously flowing He for another 1 h at 100 °C to remove any physically adsorbed oxygen or potential background gases, a CH₃OH/He gas mixture feed (30 ml/min) containing 2000 ppm methanol was introduced for chemisoprtion and maintained for \sim 30 min. Previous work demonstrated that the adsorption temperature of 100 °C can minimize the formation of physically adsorbed methanol on the samples since the CH₃OH desorption temperature is below this temperature [16,17]. After methanol adsorption, the samples were purged again at 100 °C with a He flow for an additional 1 h to remove any residual physically adsorbed methanol. The TPSR experiments were then performed with a heating rate of 10 °C/min in an UHP He flow, with the signals monitored by the online MS. The *m/e* values used to detect the different desorption products were m/e = 31 for CH₃OH, m/e = 30 for H₂CO, m/e= 45 for CH₃OCH₃ (DME), m/e = 76 for (CH₃O)₂CH₂ (DMM), m/e = 44 for CO₂ and m/e = 28 for CO. For desorbing products that gave rise to several fragments in the mass spectrometer, additional m/e values were also collected to confirm the identity of the desorbing products (e.g., m/e = 45 for CH₃OCH₃⁺ and m/e = 15 for the assicated CH_3^+ cracking fragment).

The kinetics of the surface methoxy reactions can be determined from the TPSR heating rate, 10 °C/min, and the assumption that the first-order pre-exponential factor is 10^{13} s^{-1} , a typical observed pre-exponential factor for surface methoxy reactions [16], by use of the Redhead equation for first-order kinetics:

$$\frac{E_{\rm act}}{RT_p^2} = \frac{\nu}{\beta} \exp\left(-\frac{E_{\rm act}}{RT_p}\right) \tag{1}$$

where T_p is the TPSR peak temperature, $\nu = 10^{13} \text{ s}^{-1}$ and $\beta = 0.17 \text{ °C/s}$. This equation can be applied to these supported vanadia catalysts without any corrections for readsorption since recent TPSR studies by Vohs et al. demonstrated that the same T_p temperatures are obtained with single crystals and powders for the methanol partial oxidation products that are not over-oxidized by re-adsorption [16]. Unlike single crystal studies in vacuum, it is not possible to determine or relate the kinetic parameters from the FWHM of the TPSR curve since the desorbing products signals becomes broadened due to dispersion of the gases as they pass through the thin catalyst bed. Consequently, only the T_p temperature during CH₃OH-TPSR can be accurately determined.

2.5. Steady-state methanol oxidation

Steady-state methanol oxidation was used to chemically probe the nature of the active surface sites of the catalysts. The reaction was performed in an isothermal fixed-bed differential reactor at atmospheric pressure. The amount of catalyst varied from 25 to 100 mg, depending on the specific activity of the catalyst. The volume composition of the gaseous reactant feed was 6% CH₃OH, 13% O₂ and balance He, with the total flow rate of ~100 ml/min. To maintain differential reaction conditions, the methanol conversion was always maintained below 10% by varying the amount of catalyst sample in the reactor. The specific CH₃OH conversions obtained at 230 °C for the different catalysts were 7.2% for Al₂O₃, 3.4% for 11.5% K₂O/Al₂O₃, 9.0% for 20% V₂O₅/Al₂O₃, 2.5% for 11.5% K₂O/Al₂O₃, V₂O₅/Al₂O₃ and 7.8% for 20%V₂O₅/11.5% K₂O/Al₂O₃. The methanol conversion and reaction products were analyzed using an online gas chromatograph (HP 5890 series II) equipped with TCD and FID detectors. A Carboxene-1000 packed column and a CP-sil 5CB capillary column were used in parallel for TCD and FID, respectively.

3. Results

3.1. BET specific surface area

The specific surface areas of the samples are listed in Table 1. Compared with the Al_2O_3 support, all of the samples have lower surface areas primarily due to the added mass of vanadium and potassium oxides. To better understand the effect of the added vanadium and potassium oxides on the Al₂O₃ support surface area, the specific surface areas of the Al₂O₃ support of the different samples were also calculated. The specific surface areas of the Al₂O₃ support for 20% V_2O_5/Al_2O_3 and 11.5% $K_2O/20\%$ V_2O_5/Al_2O_3 are essentially unaltered, indicating that the direct contact of the surface vanadia species with the Al₂O₃ support does not change the Al₂O₃ surface area. However, direct contact of surface potassium oxide species with the Al₂O₃ support does somewhat decrease the specific surface area of the Al₂O₃ support, 14-19 %, for the 11.5% K₂O/Al₂O₃ and 20% V₂O₅/ 11.5% K₂O/Al₂O₃ catalysts.

3.2. In situ Raman spectroscopy

The molecular structure of the supported vanadia species and the modifying effects of the surface potassium oxide additive were investigated by in situ Raman spectroscopy. The Raman spectra of the dehydrated samples at 230 °C in an O₂/He flow are presented in Fig. 1. No Raman bands were observed for the Al₂O₃ support and supported 11.5% K₂O/ Al₂O₃, which is consistent with other studies of such high surface area alumina supports [18]. The Raman spectrum of dehydrated 20% V₂O₅/Al₂O₃ exhibits two bands at 1021 and 931 cm⁻¹ and no Raman bands due to crystalline V₂O₅ (994, 686 and 520 cm⁻¹) [18]. The strongest band at ~1021 cm⁻¹

Table 1Specific surface areas (Ss) of catalysts

-				
Catalysts	Ss of the samples	Ss of the Al ₂ O ₃ in the samples		
Al ₂ O ₃	214	214		
11.5% K ₂ O/Al ₂ O ₃	163	184		
20% V ₂ O ₅ /Al ₂ O ₃	173	216		
11.5% K ₂ O/20% V ₂ O ₅ /Al ₂ O ₃	149	217		
20% V ₂ O ₅ /11.5% K ₂ O /Al ₂ O ₃	118	173		

Fig. 1. In situ Raman spectra in the M-O stretching region in flowing O₂/He at 230 °C.

has been previously assigned to the dehydrated surface vanadate species possessing one terminal V=O bond and three bridging V–O–M bonds, where M is either an Al support cation or another surface V atom [18]. The broad Raman band at \sim 931 cm⁻¹ is the characteristics of the symmetric stretch of either the bridging V–O–V or V–O–Al bond of the dehydrated polymeric surface vanadate species [18].

The Raman spectrum of dehydrated 20% V₂O₅/11.5% K₂O/Al₂O₃ shows two new Raman bands weak and strong bands at 859 and 928 cm⁻¹, respectively. Upon hydration, the Raman bands for the 20% $V_2O_5/11.5\%\ K_2O/Al_2O_3$ catalyst shift position and also become much broader (especially the 928 cm^{-1} band). These changes upon hydration/ dehydration reveal that the Al_2O_3 supported VO_r-KO_r complexes are present as a two-dimensional monolayer on the Al_2O_3 support [18]. This suggests that the Raman bands at 859 and 928 cm⁻¹ originate from the dehydrated surface VO_x species that are significantly modified by the surface KO_x species [14]. In contrast, the Raman band at 921 cm⁻¹ for the dehydrated 11.5% K₂O/20% V₂O₅/Al₂O₃ catalyst does not shift position or become broader upon dehydration. This suggests that this band originates from a crystalline phase and not a surface metal oxide species [18]. The Raman band for the supported 11.5% K₂O/20% V₂O₅/ Al_2O_3 at 921 cm⁻¹ exactly matches that for bulk KVO₃, see Fig. 1, and demonstrates that the crystalline phase in this supported catalyst is KVO_3 [14]. It is also worth noting that since crystallites generally give much stronger Raman signals than the surface metal oxide species (typically by a factor of 10^{1} – 10^{2}) [18], the KVO₃ crystallites only represent a minor fraction of the total vanadia present in the sample and that most of the vanadia is present as two-dimensional surface vanadia species.

In situ Raman spectroscopy was also used to monitor the formation of surface methoxy groups during the methanol oxidation reaction, which are the surface reaction intermediates for methanol oxidation (see Fig. 2). On the Al₂O₃ support, two weak Raman bands at 2835 and 2936 cm⁻ are observed, which correspond to the stretching of the C-H bonds of the surface Al–OCH₃ species [15]. The two strong Raman bands on the supported 11.5% K₂O/Al₂O₃ for the surface K–OCH₃ intermediate shift to 2800 and 2926 cm⁻¹. respectively. The strong K-OCH₃ Raman bands preclude any conclusions about the presence of surface Al-OCH₃ because of its much weaker Raman band. Although no surface V-OCH₃ Raman bands are present for the supported 20% V₂O₅/Al₂O₃ catalyst, previous in situ IR and Raman studies indicate that a large amount of surface V-OCH₃ is indeed present during methanol oxidation but is not Raman active [15]. The origin of this unusual Raman/IR phenomenon is general for all V-alkoxides is currently not understood and is being further investigated. The main V–OCH₃ IR bands for supported 20% V₂O₅/Al₂O₃ catalyst are found at 2831 and 2931 cm⁻¹ [15]. Although the loading of K₂O in the supported 11.5% K₂O/20% V₂O₅/Al₂O₃ is the same as in the supported 11.5% K₂O/Al₂O₃ catalyst, only two weak K-OCH₃ bands at 2807 and 2923 cm⁻¹ are present for the former and no surface K-OCH₃ bands are observed for the latter. These in situ Raman spectra reveal that the surface methoxy intermediates on these two multicomponent catalysts are primarily present as surface V-OCH₃ that are not Raman active, but IR active [15], since K-OCH₃ species give rise to strong Raman bands.

Fig. 2. In situ Raman spectra in the C-H stretching region in flowing CH₃OH/O₂/He at 230 °C.

The absence of surface V–OCH₃ Raman bands actually allows the detection of weaker signals originating from surface K–OCH₃ or Al–OCH₃ species, but the latter was not observed in any of the alumina supported metal oxide catalysts indicating that surface Al^{3+} cations were not exposed.

3.3. CH₃OH-TPSR spectroscopy

CH₃OH-TPSR spectroscopy experiments with chemisorbed surface methoxy species were undertaken to chemically probe the reactivity and selectivity of the different surface methoxy intermediates formed on the supported K₂O-V₂O₅/Al₂O₃ catalysts. The CH₃OH-TPSR spectra for the different catalysts are presented in Fig. 3. Very different reaction products and reaction temperatures were observed for the different catalysts, indicating the presence of active surface sites possessing very different chemical activity and selectivity properties. The H₂O reaction product was always formed during the decomposition of the surface methoxy intermediates on all of the samples, but the H₂O formation curves are not included in the figures for simplicity since they do not add any additional insights. Another common feature of all of the samples is the formation of some CH₃OH, which originates from the self-hydrogenation of some surface methoxy intermediates from the surface H atoms formed during the decomposition of nearby surface methoxy intermediates [10,14,16,17]. Furthermore, CH₃OH formation from surface methoxy hydrogenation seems to mostly occur at the early stages of the formation of H₂CO and CH₃OCH₃ where the concentration of the surface methoxy species is most abundant.

The TPSR spectra for pure Al₂O₃ are presented in Fig. 3(a). A large quantity of DME, the characteristic product from surface acidic sites (surface Lewis sites are electron deficient as a result of oxygen vacancies present in transitional Al_2O_3), is the major product. The reaction of the surface Al-OCH3 intermediates to yield DME initiates at ~ 125 °C with a T_p of ~ 190 °C. The addition of basic surface potassium oxide (surface basic sites are electron rich) onto the Al₂O₃ support, containing electron deficient sites, neutralized all of the surface Lewis acidic sites, as evidenced by the absence of DME that arise from surface acidic sites (see Fig. 3(b)). The predominant reaction product from the surface $K-OCH_3$ species is CO_2 , which is accompanied by a small amount of HCHO and CH₃OH. Two CO₂ formation peaks are observed, with T_p values of ~255 and ~410 °C, with the former much broader than the latter. The presence of both CO₂ and H₂CO peaks, which appear simultaneously with respect to temperature, suggests that two different surface K-OCH₃ species are present for the surface potassium oxide layer on Al_2O_3 . The higher surface K-OCH₃ decomposition temperatures relative to Al-OCH₃ reveal that surface K-OCH₃ intermediates are significantly less reactive than the surface Al-OCH₃ species. The main reaction product for the supported 20% V₂O₅/Al₂O₃ catalyst, shown in Fig. 3(c), is HCHO, reflecting that the surface of this catalyst possesses redox surface vanadia sites. Surface redox sites are able to give up an oxygen atom to a reducing reducing agent (e.g., $V^{5+}O_4 \rightarrow V^{3+}O_3$), such as methanol, and subsequently become oxidized by an oxygen carrier (e.g., $V^{3+}O_3 \rightarrow V^{5+}O_4$) such as O_2 . The surface V–OCH₃ intermediates are also very active, as reflected by the low decomposition temperature of \sim 195 °C. Some DME is also

formed for the supported V_2O_5/Al_2O_3 catalyst demonstrating the presence of a small amount of surface acidic sites in this sample. These surface acidic sites are not related to formation of Al–OCH₃ species since there are no exposed surface Al³⁺ cations and are related to the intrinsic acidity of the surface vanadia species on Al₂O₃, both surface Lewis acid sites containing oxygen vacancies and surface Bronsted acid sites containing H⁺ [11,19].

These surface acidic sites are not present on the addition of potassium oxide for the supported $11.5\% \text{ K}_2\text{O}/20\% \text{ V}_2\text{O}_5/\text{Al}_2\text{O}_3$ catalyst as reflected in the absence of DME formation during the TPSR experiment (see Fig. 3(d)). The only

reaction products found on this catalyst are HCHO and CH₃OH, which are associated with the redox surface vanadia sites. Thus, the presence of surface potassium oxide increases the selectivity of the resultant catalyst towards the selective redox reaction. Two TPSR HCHO peaks are observed one at ~195 °C and another at ~255 °C. This indicates that two types of surface methoxy intermediates are formed on the supported 11.5% K₂O/20% V₂O₅/Al₂O₃ catalyst. The surface methoxy intermediate corresponding to the ~195 °C peak is most probably corresponds to V–OCH₃ species formed on surface VO_x sites that were not influenced by K promoters since it possesses a similar temperature as

Fig. 3. CH₃OH-temperature programmed surface reaction (TPSR) spectra from: (a) Al_2O_3 ; (b) 11.5% K₂O/Al₂O₃; (c) 20% V₂O₅/Al₂O₃; (d) 11.5% K₂O/20% V₂O₅/Al₂O₃; (e) 20% V₂O₅/11.5% K₂O/Al₂O₃.

the surface V–OCH₃ species observed for 20% V₂O₅/Al₂O₃ (~195 °C). However, the peak at ~255 °C most probably originates from surface V–OCH₃ species that have had their redox properties markedly retarded by coordination of surface potassium oxide (see in situ Raman spectra in Fig. 2). The in situ Raman results are consistent with this conclusion since only a very small amount of K–OCH₃ is detected for this sample (see Fig. 2).

The TPSR spectra of the supported 20% $V_2O_5/11.5\%$ K_2O/Al_2O_3 catalyst shown in Fig. 3(e) are surprisingly very

different from that of the supported 11.5% $K_2O/20\% V_2O_5/Al_2O_3$ catalyst as a consequence of changing the order of addition of vanadia and potassium oxide onto the Al_2O_3 support in the catalyst preparation. Surface acidic sites are suppressed as reflected by the absence of DME formation and H_2CO and CH₃OH reaction products appear as a sharp TPSR peak at 220 °C. The single and sharp TPSR peak suggests that only one type of surface methoxy intermediate is formed on this catalyst surface. However, the reactivity of the surface V–OCH₃ species has been affected by the surface

Fig. 3. (Continued).

potassium oxide on the Al₂O₃ support since the K-free supported 20% V₂O₅/Al₂O₃ catalyst exhibits a HCHO T_p that is ~25 °C lower than that for the catalyst prior to the addition of K₂O. Interestingly, the predominant surface V–OCH₃ reaction to form HCHO occurs at very different temperatures for supported 20% V₂O₅/11.5% K₂O/Al₂O₃ and for supported 11.5% K₂O/20% V₂O₅/Al₂O₃ (~220 and ~255 °C, respectively).

The surface methoxy TPSR peak temperatures, $T_{\rm p}$, reaction products, ratio of H₂CO/CH₃OH, $E_{\rm act}$ and $k_{\rm rds}$ at 230 °C of the different catalysts were determined by application of the Redhead equation for first-order reaction kinetics (see CH₃OH-TPSR experimental section above for details) and are summarized in Table 2. It is interesting to observe that as the $T_{\rm p}$ of the surface V–OCH₃ species increased, due to the addition of the surface potassium oxide species, the ratio of H₂CO/CH₃OH decreased, which is consistent with the

reduction in redox activity and, consequently, an increase in hydrogenation activity of the surface V–OCH₃ species. As the surface V–OCH₃ species became less active, higher T_p , the activation energy for the surface reactions increased and the first-order rate constants, k_{rds} , at 230 °C decreased by almost two orders of magnitude (see Table 2). The activation energy values increased when K₂O was added to the catalysts and this resulted in lower rate constants, k_{rds} , for the rate-determining step of the surface methoxy decomposition.

3.4. Steady-state methanol oxidation

Methanol oxidation was investigated over the different supported $K_2O-V_2O_5/Al_2O_3$ catalyst systems, under differential reaction conditions, and the results are presented in Table 3. The Al_2O_3 support contains only surface Lewis

Table 2

Surface methoxy decomposition temperatures and product distribution during CH₃OH-TPSR spectroscopy

Catalyst	Al ₂ O ₃	11.5% K ₂ O/Al ₂ O ₃		20% V ₂ O ₅ /Al ₂ O ₃	11.5% K ₂ O/20% V ₂ O ₂ /Al ₂ O ₂		20% V ₂ O ₅ /11.5% K ₂ O/Al ₂ O ₂
Tp (°C)	190	255	410	195	195	255	220 223
Eact (Kcal/mol)	31.4	36.0	46.9	31.8	31.8	36.0	33.5
k_{rds} at 230 °C (s ⁻¹)	0.193	0.002	3.52×10^{-8}	0.136	0.136	0.002	0.024
K _{ads} (L/mol)	34	103	5.84×10^5	54	54	103	343
$A_{ads} \times 10^{-5}$ (L/mol)	36.2	1.1	0.1	38.5	38.5	1.1	44.4
ΔH_{ads} (Kcal/mol)	-11.4	-16	-26.9	-11.8	-11.8	-16	-13.5
Product distribution							
Major product	DME	CO_2		HCHO	HCHO		HCHO
Minor product	_	HCHO		DME	-		-
HCHO/CH ₃ OH ratio (not calibrated)	-	0.4		2.1	1.2		1.4

Steady state methanol oxidation on the eatarysts								
Catalyst	Ns (surface sites/nm ²)	Selectivity (%)				Rate (mmol/g h)	TOF $(s^{-1}) \times 10^{-3}$	
		НСНО	DMM	CO ₂	DME			
Al ₂ O ₃	3.4	-	_	_	100	121	9.5	
11.5%K ₂ O/Al ₂ O ₃	~ 8	30	_	70	-	2.8	0.3	
20%V ₂ O ₅ /Al ₂ O ₃	~ 8	50	40	-	10	85.8	10.8	
$11.5\% K_2 O/20\% V_2 O_5/Al_2 O_3^a$	$\sim 8/8$	85	_	15	-	2.3	0.3	
20%V2O5/11.5%K2O /Al2O3b	$\sim 8/8$	100	_	-	-	95.0	12.0	

Table 3 Steady state methanol oxidation on the catalysts

Data were collected at 230 °C; $CH_3OH/O_2/He = 6/14/80$.

 a 20% V_2O_5/Al_2O_3 was prepared first, then KNO_3 was impregnated onto it.

 b 11.5% $K_{2}O/Al_{2}O_{3}$ was prepared first, then $VO(OC_{3}H_{7})_{3}$ was impregnated onto it.

acidic sites [19] that give rise to 100% DME selectivity, the characteristic methanol reaction product from surface acidic sites [20–22]. The addition of 11.5 wt.% K₂O onto the Al₂O₃ support completely suppresses the production of DME, indicating the neutralization of all of the surface acidic sites and the formation of a large quantity of CO₂, which reflects the presence of surface basic sites on this catalyst. The complete neutralization of the electron deficient Al₂O₃ surface acidic sites by the electron rich basic potassium oxide demonstrates that the supported 11.5% K₂O/Al₂O₃ catalyst must contain a two-dimensional monolayer of surface potassium oxide. HCHO was also formed as a minor reaction product over the supported 11.5% K₂O/Al₂O₃ catalyst with a selectivity of 30%, indicating that the basic surface potassium oxide species also possess surface redox character since the production of both H₂CO as well as CO₂ and H₂O require the consumption of oxygen.

Supported vanadia catalysts are well known for their redox properties and as partial oxidation catalysts. For the supported 20 wt.% V_2O_5/Al_2O_3 catalyst, large amounts of the partial oxidation products HCHO and DMM were formed from the surface redox sites, with a selectivity of 50 and 40%, respectively. Dimethoxy methane, $H_2C(OCH_3)_2$, is only formed at lower reaction temperatures due to the condensation of surface methoxy species at high surface intermediate coverage and the simultaneous presence of surface redox and acidic sites [21]. The surface acidic sites do not originate from surface Al–OCH₃ intermediates since in situ IR studies demonstrated that such species are not present when a two-dimensional surface vanadia monolayer is present [15]. These surface acidic sites are due to the presence of surface Lewis and Bronsted acidic sites associated with the surface vanadia monolayer itself [19].

Both supported 11.5% $K_2O/20\% V_2O_5/Al_2O_3$ and 20% $V_2O_5/11.5\% K_2O/Al_2O_3$ catalyst are highly selective towards HCHO with a selectivity of 85 and 100%, respectively. This suggests that the surface chemistry of these two multicomponent catalysts is dominated by surface vanadia redox species. For the supported 11.5% $K_2O/20\% V_2O_5/Al_2O_3$ catalyst, 15% CO_2 is also produced indicating the presence of exposed surface potassium oxide basic sites. However, when vanadia was deposited after the potassium oxide on the Al_2O_3 supported, then no exposed surface basic

sites appear to be present and only exposed surface redox sites are present in the supported 20% $V_2O_5/11.5\%$ K₂O/Al₂O₃ catalyst.

The catalytic activity is also a very important parameter to evaluate the performance of a given catalyst besides its selectivity to targeted reaction products since by definition selectivity is determined by the relative reaction rates. The reaction rates and turnover frequency (TOF) values for the different catalysts were determined and are listed in Table 3. The catalytic activities of the different samples, as well as their selectivity, are also dramatically modified by the presence of the various components on the Al₂O₃ support and by the different preparation orders. The Al₂O₃ support and the supported 20% V_2O_5/Al_2O_3 catalyst are very active with TOF values of ${\sim}10$ \times $10^{-3}~s^{-1}$ at 230 °C. Their activities are significantly suppressed by the addition of potassium oxide, as evidenced by the significantly lower TOF values of $\sim 0.3 \times 10^{-3} \text{ s}^{-1}$ at 230 °C for the supported 11.5% K₂O/ Al₂O₃ and 11.5% K₂O/20% V₂O₅/Al₂O₃ catalysts. In contrast, although the supported 20% V₂O₅/11.5% K₂O/Al₂O₃ catalyst contains the same composition as the supported 11.5% K₂O/ 20% V₂O₅/Al₂O₃ catalyst, it still displays a high activity for the oxidation of methanol to formaldehyde. The comparable steady-state TOF values of the supported 20% V2O5/11.5% K_2O/Al_2O_3 and 20% V_2O_5/Al_2O_3 catalysts reveals that the activity of the 20% V2O5/11.5% K2O/Al2O3 catalyst is not decreased by the presence of surface potassium oxide on the Al₂O₃ support. Thus, 100% redox selectivity is achieved in the supported 20% V₂O₅/11.5% K₂O/Al₂O₃ catalyst system by selectively poisoning the surface acidic sites by the basic surface potassium oxide and introducing very active redox surface vanadia sites that are orders of magnitude more active than the basic surface potassium oxide sites.

Combination of the methanol oxidation transient TSPR data and the steady-state kinetic data also allows for the quantitative determination of some of the thermodynamic adsorption properties (K_{ads} , ΔH_{ads} and A_{ads}) for methanol oxidation over these catalysts [9,23]:

$$TOF = K_{ads}k_{rds}P_{CH_3OH}$$
(2)

$$E_{\rm app} = E_{\rm act} + \Delta H_{\rm ads} \tag{3}$$

$$A_{\rm app} = \nu + A_{\rm ads} \tag{4}$$

$$k_{\rm rds} = v \exp\left(-\frac{E_{\rm act}}{RT}\right) \tag{5}$$

these kinetic parameters were defined in Eq. (1) above, and

$$K_{\rm ads} = A_{\rm ads} \exp\left(-\frac{\Delta H_{\rm ads}}{RT}\right) \tag{6}$$

where K_{ads} is the CH₃OH adsorption equilibrium constant, (H_{ads} is the heat of adsorption of CH₃OH on the catalyst surface (an exothermic process; larger negative values reflect stronger bonding of methanol to the catalyst surface) and A_{ads} is the adsorption pre-exponential factor. The apparent parameters E_{app} and A_{app} are composed of kinetic and thermodynamic terms as defined in Eqs. (3) and (4) above, respectively. The units for all of these kinetic and thermodynamic parameters are given in Table 2 as well as their quantitatively determined values from the CH₃OH-TPSR and steady-state methanol oxidation studies for each of the catalysts.

The addition of K₂O to the catalysts has a pronounced effect on the thermodynamic parameters for methanol oxidation as well as the kinetic parameters already presented earlier. Surface potassium oxide increases the exothermic surface heat of adsorption of methanol, which is reflected in the orders of magnitude increase of the methanol equilibrium adsorption constant, K_{ads} , and the affinity for methanol for these surfaces. There is also a concomitant decrease in the A_{ads} values, but the exponential term dominates the values of K_{ads} . It is also interesting that the H₂CO/CH₃OH integrated values from the CH₃OH-TPSR experiments reveal that the addition of surface potassium oxide to the supported V₂O₅/Al₂O₃ catalysts also increases the surface methoxy hydrogenation rate over the surface oxidativedehydrogenation rate, which results in more CH₃OH being formed at the expense of H₂CO. Thus, the thermodynamic CH₃OH heat of adsorption has an influence on the selectivity of the H₂CO and CH₃OH reaction products during the CH₃OH-TPSR experiments.

Discussion

The in situ Raman studies during methanol oxidation provided direct fundamental information about the nature of the active surface sites and the surface reaction intermediates. Characterization of the various alumina-supported catalysts during methanol oxidation revealed that (1) the Al₂O₃ catalyst exclusively consisted of Al–OCH₃ surface species, (2) the 11.5% K₂O/Al₂O₃ catalyst exclusively consisted of a monolayer of surface KO_x species since only K–OCH₃ surface species and no exposed surface Al–OCH₃ sites were detected, and (3) the 20% V₂O₅/Al₂O₃ catalyst possessed a monolayer of surface vanadia species and exclusively consisted of V–OCH₃ surface species since surface Al–OCH₃ species were not detected. For the alumina-supported mixed metal oxide catalysts, the 20% $V_2O_5/11.5\%$ K₂O/Al₂O₃ catalyst consisted of a monolayer of surface V–OCH₃ species anchored to the 11.5% K₂O/Al₂O₃ substrate and the 11.5% K₂O/V₂O₅/Al₂O₃ catalyst consisted of a monolayer of surface V–OCH₃ and minor amounts of surface K–OCH₃ species and crystallites of KVO₃.

The CH₃OH-TPSR spectroscopy experiments provided additional insights into the nature of the surface active sites as well as their surface chemistry and kinetics. The acidic surface Al–OCH₃ complex exclusively yielded CH₃OCH₃ as the reaction product at modest temperatures. The acidic surface reaction mechanism proceeds via:

$$CH_3OH + * + O * \rightarrow CH_3O * + HO*$$
(7)

 $CH_3O^* + * \mathop{\rightarrow} CH_3^* + O * \quad rds: \ rate \ determining \ step$

$$CH_3^* + CH_3O^* \leftrightarrow CH_3OCH_3 + 2^*$$
(9)

$$HO * + HO * \leftrightarrow H_2O + O * \tag{10}$$

where * denotes an active surface site, which is an Al site for Al₂O₃. The rate-determining-step (rds) is the slowest step in the above sequence of surface catalyzed elementary reaction steps and involves breaking one of the surface Al-OCH₃ C-O bonds to form the DME reaction product at ~ 190 °C. Kinetic isotopic experiments with CH₃OH and CD₃OD revealed that the rate of DME formation does not depend on breaking either the C-H or O-H bonds [24] and, consequently, only depends on breaking of the C-O bond of the surface methoxy intermediate (reaction step 10). Furthermore, the formation of DME proceeds by a Langmuir-Hinselwood reaction mechanism that does not involve gas-phase CH₃OH since the reaction readily takes place in the absence of gaseous CH₃OH during the CH₃OH-TPSR experiment in flowing He. The reversible dissociative chemisorption of methanol, reaction step 9, is reflected in the production of the CH₃OH reaction product at \sim 170 °C from surface methoxy species during CH₃OH-TPSR and the formation of CH₃OD and CD₃OH during transient isotope exchange experiments [24]. The reversible nature of reaction steps 11 and 12 is well documented in the literature [25–27]. Furthermore, both the in situ Raman and CH₃OH-TPSR spectra reveal that surface Al-OCH₃ species is the most abundant reaction intermediate (MARI).

The basic surface K–OCH₃ complex primarily produced CO₂ and minor amounts of H₂CO reaction products during the CH₃OH-TPSR experiment. Note that no DME was formed indicating that the basic surface KO_x species essentially titrated all the surface Lewis acidic sites of the Al₂O₃ support and that the surface KO_x was highly dispersed on the alumina substrate. The relatively higher temperatures for the formation of CO₂ at 255 and 410 °C reflect the high stability of the surface K–OCH₃ intermediate. The additional formation of the H₂CO reaction product reveals that surface basic sites are also capable of undergoing redox reactions.

(12)

(19)

The basic surface reaction mechanism proceeds via:

$$CH_3OH + * + O * \leftrightarrow CH_3O * + HO*$$
(11)

$$CH_3O * + O * \rightarrow H_3CO_2 * + *$$

rds : ratedeterminingstep

$$\begin{array}{ll} H_3 \text{CO}_2 * + * \rightarrow H_2 \text{CO}_2 + \text{H}* \\ H_2 \text{CO}_2 * + * \rightarrow \text{HCOO}* + \text{H}* \end{array} \tag{13}$$

$$HCOO * \pm * \rightarrow CO_2 \pm H * \pm *$$
(15)

$$\mathsf{HCOO} * + * \to \mathsf{CO}_2 + \mathsf{H} * + * \tag{13}$$

$$H * + O * \leftrightarrow HO * + *$$
(16)

$$\mathrm{HO} * + \mathrm{H} * \leftrightarrow \mathrm{H}_2\mathrm{O} + 2* \tag{17}$$

where * is the surface K site, the MARI is K-OCH₃ and the rds involves insertion of atomic oxygen into the surface methoxy intermediate to form CH₃OO* (reaction step 14). Kinetic isotope experiments with CH₃OH and CD₃OD revealed that formation of CO_x at modest conversions is independent of the specific methanol isotope [24]. This suggests that breaking of C-H bonds is not involved in the rate-determining step for CO_x formation and that oxygen insertion must be involved in the rate-determining step. The surface H₂CO₂* and HCOO* intermediates were not detected in the present investigation employing in situ Raman at 230 °C, but are well known to be the surface intermediates involved in the transformation of surface CH₃O* to CO₂ from more extensive in situ IR studies [27]. The highly stable surface K-OCH₃ intermediate is also reflected in the very low amounts of CH₃OH formed via reversible dissociative chemisoprtion of methanol, reaction step 13 (compare Fig. 3a and b).

The redox surface V–OCH₃ primarily yielded H₂CO and smaller amounts of DME. The DME is not formed from exposed Al–OCH₃ sites since they are not present in the Raman spectrum (see Fig. 2), but from surface Lewis and Bronsted acidic sites associated with the monolayer of surface VO_x on an Al₂O₃ support [19]. The redox surface mechanism proceeds via:

 $CH_3OH + * + O * \leftrightarrow CH_3O * + HO*$ (18)

$$CH_3O * + * \rightarrow H_2CO + H * + *$$

rds : ratedeterminingstep

 $H * + O * \leftrightarrow HO * + *$ (20)

$$\mathrm{HO} * + \mathrm{H} * \leftrightarrow \mathrm{H}_2\mathrm{O} + 2* \tag{21}$$

where * represents the surface V site, the MARI is V–OCH₃ and the rds is the scission of the C–H bond of the surface V– OCH₃ intermediate to form H₂CO at ~195 °C (see Fig. 3c). Kinetic studies with CH₃OH and CD₃OD demonstrated a significant kinetic isotope effect between these molecules, a factor of 5–6 greater for CH₃OH oxidation to H₂CO, reflecting the breaking of the C–H bond in the rate-determining step [24]. The reversible dissociative chemisorption of methanol, reaction step 20, also occurs readily on the surface VO_x sites at ~177 °C. It is interesting that the CH₃OH T_p occurs about 20 °C below the T_p for the main reaction product, which indicates the ease with which the surface CH₃O* species are able to recombine with surface H* to desorb as CH₃OH. Transient kinetic isotope studies with CH₃OH and CD₃OD further reveal that the hydroxyl H–D exchange is extremely efficient for the formation of CH₃OD and CD₃OH [23,24].

The addition of 11.5% K₂O to the supported 20% V₂O₅/Al₂O₃ catalyst markedly affects the TPSR products as well as their $T_{\rm p}$ values (see Fig. 3d). The formation of DME is completely suppressed since the basic surface KO_x has completely titrated the surface acidic sites. The primary surface site for the 11.5% K₂O/20% V₂O₅/Al₂O₃ catalyst is V with some minor exposed K sites (see Fig. 2), the MARI is V-OCH₃ and the rds is the scission of the C-H bond of the surface V-OCH₃ intermediate to form H₂CO. Thus, this catalyst follows the same redox reaction mechanism as shown above for reaction steps 18-21. The major T_p value for the formation of H₂CO is increased from 195 to 255 °C, which reflects a significant decrease in the kinetics of H₂CO formation from the surface V- OCH_3 due to the retarding influence of the surface KO_x species on the redox properties of the surface V-OCH₃ species (see Tables 2 and 3). Interestingly, the slower kinetics of the redox reaction of surface V-OCH₃ to H₂CO enhances the relative kinetics of the reversible recombination of V-OCH₃ and H* to form CH₃OH (reaction step 18) since the ratio of H_2CO/CH_3OH decreases in the TPSR experiment (see Table 2).

Addition of 20% V₂O₅ to the supported 11.5% K₂O/ Al₂O₃ catalyst markedly affects the reaction products as well as the kinetics of the methanol oxidation reaction. However, the results are not completely the same as for the 11.5% K₂O addition to the supported 20% V₂O₅/Al₂O₃ catalyst discussed above. Most notably, only the surface V–OCH₃ species are present for the supported 20% V₂O₅/ 11.5% K₂O/Al₂O₃ catalyst and the T_p value occurs at a lower temperature reflecting the more active nature of the resultant surfaceV–OCH₃ species in this catalyst. The exclusive formation of 100% H₂CO redox product for this catalyst at steady state, versus 85% H₂CO and 15% CO₂ from the exposed basic surface KO_x sites for the supported 11.5% K₂O/20% V₂O₅/Al₂O₃ catalyst (see Table 3), further confirms the absence of exposed active surface KO_x sites.

The above studies demonstrated that it is possible to design the surfaces of supported metal oxide catalysts to yield 100% surface acidic sites (the Al₂O₃ support), 100% surface basic sites (11.5% K₂O/Al₂O₃), 100% surface redox sites (20% V₂O₅/11.5% K₂O/Al₂O₃) or mixed surface acidic-redox sites (20% V₂O₅/Al₂O₃) as well as surface basic-redox sites (11.5% K₂O/20% V₂O₅/Al₂O₃). Methanol oxidation over a supported 15% V₂O₅/Al₂O₃ catalyst, containing both surface acidic-redox sites, was found to yield high selectivity towards DMM at reaction temperatures of 180–190 °C where the surface concentration of CH₃O* was very close to monolayer coverage [28]. The condensation of

CH₃OH to (CH₃O)₂CH₂ requires (1) initial formation of H₂CO on surface redox sites, (2) subsequent reaction of H₂CO with surface methoxy species on adjacent surface acidic sites and (3) a high surface concentration of CH₃O* species to facilitate the previous reaction step involving the reaction of H₂CO with two methanol/methoxy molecules. In contrast, only low selectivity to DMM formation could be obtained on the surface acidic Al₂O₃ support and the surface redox supported 20% V₂O₅/11.5% K₂O/Al₂O₃ catalysts.

Conclusion

In summary, the surfaces of the supported $K_2O-V_2O_5/$ Al₂O₃ catalytic system could be designed to yield 100% surface acidic sites (Al₂O₃), 100% surface basic sites (K₂O/ Al_2O_3), 100% surface redox sites ($V_2O_5/K_2O/Al_2O_3$), mixed surface redox-acidic sites (V₂O₅/Al₂O₃) and mixed surface redox-basic sites (K₂O-V₂O₅/Al₂O₃). During CH₃OH oxidation, (1) the surface acidic sites consisted of Al-OCH₃ intermediates that exclusively yielded CH₃-OCH₃, (2) the surface basic sites consisted of K-OCH₃ intermediates and primarily yielded CO2 and minor amounts of H_2CO , (3) the surface redox sites consisted of V-OCH₃ intermediates and exclusively yielded HCHO, (4) the mixed surface redox-acidic sites consisted of V-OCH₃ intermediates and yielded HCHO and $(CH_3O)_2CH_2$, and (5) the mixed surface redox-basic sites consisted of V-OCH₃ and K-OCH₃ intermediates that yielded HCHO and CO₂, respectively. The reactivity of the different surface reaction intermediates was found to be V–OCH₃ \sim Al–OCH₃ > K–OCH₃ and the reactivity of the surface V-OCH₃ could be modified by the addition of potassium oxide and its order of impregnation (before or after the impregnation of vanadia). Impregnation of Al₂O₃ by potassium oxide before vanadia addition resulted in a stronger interaction between the potassium oxide and Al₂O₃, which resulted in a more active surface VO_x species. However, impregnation of Al₂O₃ by vanadia before potassium oxide addition resulted in a stronger interaction between the vanadia and potassium oxide, which resulted in a less active surface VO_x species. Thus, the desired selectivity characteristics can be tuned by the design of the catalytically active surface sites: basic surface potassium oxide was able to suppress the activity of surface acidic sites, and redox surface vanadia sites were able to suppress the activity of the surface basic sites while still retaining their active redox properties.

Acknowledgements

This paper is dedicated to the memory of Dr. Robert Beyerlein, formerly director of catalysis at the Department of Energy-Basic Energy Sciences division. The authors gratefully acknowledge the financial support of the Department of Energy, Basic Energy Sciences (grant DEFG02-93ER14350) for this work. The authors would also like to acknowledge Professor J.-M. Jehng, Dr. Y. Chen and Mr. S. Choi for their assistance.

References

- [1] I.E. Wachs, B.M. Weckhuysen, Appl. Catal. A: Gen. 157 (1997) 67.
- [2] J.P. Dunn, H.G. Stenger Jr., I.E. Wachs, Wachs, Catal. Today 301 (1999) 51.
- [3] C.L. Pieck, S. del Val, M. Lopez Granados, M.A. Banares, J.L.G. Fierro, Langmuir 18 (2002) 2642.
- [4] M.G. Nobbenhuis, A. Baiker, P. Barnickel, A. Wokaun, Appl. Catal. A: Gen. 85 (1992) 157.
- [5] T. Blasco, J.M. Lopez Nieto, Appl. Catal. A 157 (1997) 117.
- [6] X.T. Gao, M.A. Banares, I.E. Wachs, J. Catal. 188 (1999) 325.
- [7] A. Khodakov, B. Olthof, A.T. Bell, E. Iglesia, J. Catal. 181 (1999) 205.
- [8] C.P. Kumar, K.R. Reddy, V.V. Rao, K.V.R. Chary, Green Chem. (2002) 513.
- [9] G. Deo, I.E. Wachs, J. Catal. 146 (1994) 335, 323.
- [10] L. Lietti, P. Forzatti, G. Ramis, G. Busca, F. Bregani, Appl. Catal. 3 (1993) 13.
- [11] J.M. Lopez Nieto, P. Concepcion, A. Dejoz, F. Melo, H. Knozinger, M.I. Vasquez, Catal. Today 61 (2000) 361.
- [12] D. Courcot, A. Ponchel, B. Gryzbowska, Y. Barbaux, M. Rigole, M. Guelton, J.P. Bonelle, Cat. Today 33 (1997) 109.
- [13] D.A. Bulushev, E.M. McCarron, L. Kiwi-Minsker, A. Renken, Langmuir 17 (2001) 5276.
- [14] G. Garcia Cortez, J.L.G. Fierro, M.A. Banares, Catal. Today 78 (2003) 219.
- [15] L.J. Burcham, G. Deo, X.T. Gao, I.E. Wachs, Topics Catal. 11 (2000) 85.
- [16] T. Feng, J.M. Vohs, J. Catal. 208 (2002) 301.
- [17] L.E. Briand, W.E. Farneth, I.E. Wachs, Catal. Today (2000) 219.
- [18] M.A. Banares, I.E. Wachs, J. Raman Spectros. 33 (2002) 359.
- [19] A.M. Turek, I.E. Wachs, E. Decanio, J. Phys. Chem. 96 (1992) 5000.
- [20] M.T. Xu, J.H. Lunsford, D.W. Goodman, A. Bhattacharyya, Appl. Catal. A 149 (1997) 289.
- [21] J.M. Tatibouet, Appl. Catal. A: Gen. 148 (1997) 213.
- [22] T. Ono, Y. Tanaka, T. Takeuchi, K. Yamamoto, J. Mol. Catal. 159 (2000) 293.
- [23] W.L. Holstein, C.J. Machiels, J. Catal. 162 (1996) 118.
- [24] J.M. Tatibouet, H. Lauron-Pernot, J. Mol. Catal. A:Chem. 171 (2001) 205.
- [25] L.J. Burcham, M. Badlani, I.E. Wachs, J. Catal. 203 (2001) 104.
- [26] H.C. Liu, P. Cheung, E. Iglesia, J. Catal. 217 (2003) 222.
- [27] G. Busca, Catal. Today 27 (1996) 457.
- [28] J. Tavakoli, I.E. Wachs, in press.